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Abstract—A theoretical study is made of steady two-dimensional laminar film condensation of pure
saturated steam at 100°C and atmospheric pressure on an isothermal vertical wall. The variable physical
properties of the liquid condensate are taken to be those of saturated water at the appropriate temperatures.
On neglecting the effects of surface tension at the liquid—vapour interface the governing equations for the
liquid and vapour phases are simplified, using boundary-layer approximations, and admit to a solution in
terms of similarity variables. From numerical solutions of the resulting ordinary differential equations
flow characteristics for the liquid and vapour phases are determined for the wall temperatures 0, 10, 40, 70
and 90°C. The related results on wall heat transfer and mass flow in the liquid phase are presented and
compared in detail with those from existing theories.
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NOMENCLATURE
= gp(p — p¥)x*/u?, a dimensionless
group;

specific heat;

dimensionless velocity and thermal
functions;

acceleration due to gravity;

local heat-transfer coefficient ;

latent heat of condensation;
thermal conductivity;

= hg,/c(T, — T,), a dimensionless
group;

pressure;

= c_;u_’ the Prandtl number;

= 4I'/u, film Reynolds number ;
temperature;

condensate velocity components in
the x,, x, directions;

vapour velocity components in the
x¥, x% directions;
Cartesian coordinates
phase;

intrinsic coordinates in vapour phase.

in liquid

Greek symbols
d, local thickness of condensate film;
P, density;
i, viscosity ;
o _ T — T, dimensionless
’ T.—-T,) temperature;;
r, condensation rate.
Subscripts
s, saturated;
w, wall;
r, reference;
D, Drew reference;;
M-S, Minkowycz and Sparrow reference.
Superscripts
* vapour phase;
N, Nusselt ;
R, Rohsenow;
C, Chen.

INTRODUCTION

THE MECHANISM of laminar film condensation

on a vertica
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1 isothermal flat plate maintained at
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constant temperature below the saturation
temperature of the surrounding quiescent vapour
was first studied by Nusselt [1]. Nusselt’s
theory consisted of simple force and heat
balances in the condensate film and ignored
effects due to inertia forces, thermal convection,
interfacial shear and the dependence of the
physical properties of the condensate on tem-
perature. The effects of thermal convection were
first investigated by Bromley [2] and Rohsenow
[3] To include the effects of thermal convection
and inertia forces in the liquid film a new
approach was formulated by Sparrow and
Gregg [4] using boundary-layer approxima-
tions. This approach has been extended by
Koh, Sparrow and Hartnett [5] to include the
induced motion of the vapour and hence the
effect of interfacial shear. In both [4] and [5]
the boundary-layer type equations, as indicated
by the work of Nusselt [1], yielded solutions in
terms of similarity variables; the relevant
ordinary differential equations were solved
using numerical methods. Using integral bound-
ary-layer techniques, Chen [6] has considered
analytically the effects of thermal convection,
inertia forces and interfacial shear.

In the foregoing analyses [1-6] the physical
properties of the condensate are assumed to
be independent of the temperature. Drew (see
McAdams [7]) has shown that if, as in Nusselt’s
theory, the temperature distribution in the
condensate is linear and on assuming that the
condensate viscosity varies inversely with the
temperature then the effects of variable viscosity
on flow and heat transfer can be estimated by
using the results of Nusselt’s constant fluid
property model with the viscosity evaluated at
the reference temperature T, = T,, + 025 (T, —
T,). Taking the above viscosity variation and
on further assuming that the condensate con-
ductivity varies linearly with the temperature
Voskresenskiy [8] has re-investigated the model
proposed by Nusselt. In a later paper Labuntsov
[9] has refined this work, and shown that the
flow and heat-transfer characteristics may be
evaluated from the existing Nusselt formula, with
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condensate property values evaluated at the
saturation temperature, provided a simple cor-
rection factor is used. Obviously if the con-
ductivity of the condensate is assumed constant
the modifications to Nusselt’s model proposed
by Drew and Voskresenskiy, respectively, would
be identical. In a recent paper Minkowycz and
Sparrow [10] have used Voskresenskiy’s theory
for the condensate film in an investigation of the
effect of air as a non-condensable gas in the
condensation of steam; other effects due to
interfacial resistance or temperature jump at
the liquid—vapour interface, superheating, and
to variable fluid properties in the steam-air
mixture were considered. The property values
for water were taken from Eckert and Drake
[11] and a new reference temperature
Tyus= T, + 031(T; — T,) was derived; here
T; is used to denote the bulk saturation tem-
perature of the vapour. In particular for the
condensation of pure saturated steam at atmos-
pheric pressure and at 100°C the results
obtained for wall heat transfer using the Nusselt
theory and the Minkowycz and Sparrow refer-
ence temperature will be, essentially, equivalent
to those obtained by employing the Labuntsov
correction factor as described above.

It is clear that no general conclusions on the
combined effects due to thermal convection.
inertia forces, interfacial shear and variable
physical properties can be drawn from the
essentially separate constant fluid property
solutions [2-6] and the relatively simple variable
fluid property modifications [7-9]. Indeed all
of these effects on flow and heat-transfer
characteristics are intimately connected. The
motive for the present investigation is to
provide further information on the combined
eftects discussed in references [2-9].

The flow configuration to be studied is as
follows. An isothermal vertical flat plate is
inserted in a large volume of quiescent pure
saturated steam at atmospheric pressure. If
the plate temperature is T, then provided
T, < T, the saturation temperature of the
vapour, steady two-dimensional film condensa-
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tion will occur on the plate. It is assumed that
laminar flow is induced by gravity within the
liquid and vapour phases. Surface tension
effects at the liquid-vapour interface are neg-
lected implying that the interface is smooth and
free from waves.

BASIC GOVERNING EQUATIONS FOR
THE LIQUID AND VAPOUR PHASES

Let x, measure the distance in the downward
direction along the plate and x, the distance
normal to the plate; the leading edge is located
at x; = x, = 0. In the liquid film the velocity
field is denoted by the components v; and v, in
the x, and x, directions respectively, and the
local temperature field by T. The liquid—-vapour
interface is defined by

Xy = 6(x,). (1)

Because the liquid film is thin all spatial deriva-
tives across the film are large in comparison
to those along the film. Consequently the rate
of charnge of velocity or temperature across the
film is large in comparison with corresponding
changes along its length. The governing equa-
tions expressing conservation of mass,
momentum and thermal energy in the liquid
phase now simplify to the boundary-layer
equations as follows:

éi—l(pvl) + a—(jc—z-(lwz) =0, @
p(vl%+ vz%> = —%'F pg
=_%} 4)

c va—T+v L kaT ()]
P 1ox, 20x,)  0x, \ o0x,)

where in the latter equation viscous dissipation

and work done against compression have been
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neglected. These equations must be supple-
mented with certain fluid property relations.
1t is assumed for the condensate

p=pT) ¢, =c)T)
p=uT) and k=KT). (6)

and moreover this data is available from
experiment.

In the derivation of the relevant boundary-
layer equations for the vapour phase it is
convenient to choose a set of intrinsic coordi-
nates attached to the interface. Let x} measure
the distance along the interface, x¥ the distance
along the normal and v¥, v% denote the associated
velocity components. The governing equations,
expressing conservation of mass and momentum,
in the vapour phase can be written as the
boundary-layer equations:

ot  ovi
67’{ + gx-g' =0, (7
ovt ov} op*
] % 1 * 1 - _ *
ps <vl ax? + UZ ax;> 6XT + psg
o*v¥
* 1
‘i ©
and
dop*
- ox¥ ©)

In doing so it is assumed that the radius of
curvature of the interface is large compared
with the thickness of the film (see Goldstein
{12]); moreover to the same approximation

x; = x%
and (10)
X, = x3 + 0(x,).
The physical boundary conditions are:
vy =0,=0, T=T,
for x, =0, x; 20, (11)

T=T,
in the liquid phase, whilst at large distance from

for x, =d(xy), x4 20,
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the plate in the vapour phase

x; 20 (12)

It now remains to express conditions for the
location of the liquid—vapour interface and
relevant criteria for matching v, p in the liquid
phase with v*, p* in the vapour phase at this
location. Obviously four conditions are re-
quired, three for matching v,, v, and p and one
for deducing the form of (1). They are derived as
in [5] from consideration of the velocities, mass
flow, shear stresses and the heat flux vector at
the interface. These conditions are now ex-
pressed within the frame-work of the boundary-
layer approximations already used. At the
interface the tangential components of the
liquid and vapour phases must be continuous
giving the condition:

vf -0 as x, — 00,

U, = UT for Xy = 5(X1), X1 = 0. (13)

The local mass flux crossing the liquid—vapour
interface is continuous, and hence:

dé
pséz o, a;‘) .

X, = 0(xy),x; 2 0.

for

(14)

On considering the stress tensor at the interface
yields the conditions:

*
v, . Ot

“S_—— = ”s axg

fi
% or

p=rp*

X, = 8(xy) x; = 0; (15)
the former condition is true only if surface
tension is neglected, whilst the latter is valid
even if surface tension is included. It now
remains to derive the fourth condition for
determining &(x,). This is obtained on applying
the first law of thermodynamics to a control
volume of the condensate bounded by the
planes x,, x; + dx,, the wall x, =0 and the
appropriate section of the liquid—vapour inter-
face. The condition is as follows:
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X1 o(x)

or
—kwj<5x—2>w dxl + hfg J PV, dxz
()] 0

axp)
+ pv(c,, T, — ¢, T)dx,

[

xy 6(x1)
oc, [ 0T oT
+ f I p ﬁ(vla—x; + Uzgg>dx1 dx,
0
(16)

The various terms occurring in this energy
balance are readily identified. The first term is
the heat transferred by conduction from the
condensate to the plate; the second term is due
to the latent heat of condensation; the third
term is due to subcooling of the condensate
below saturation temperature; the fourth term
is essentially a dissipative effect associated with
the convective rate of change of the thermal
capacity. Within the frame-work of the
boundary-layer hypothesis viscous dissipation
and work done against compression are negli-
gible; the work done by the surface tension at
the interface has been ignored. Finally, by virtue
of the interface condition p = p*, and equations
(4, 9) and the boundary condition (12) it follows,
as is usual in boundary-layer theory, that the
pressure along a normal to the wall in both
phases is constant and 0dp/dx; = Op*/0x¥ =
p¥g. This completes the formulation of the
equations for laminar film condensation in
which the effect of variable physical properties
within the condensate has been taken into
account.

It is convenient to introduce new dependent
and independent variables as follows: for the
liquid phase

xl =LX1, XZ=LX2, 5=LA,
vs vs
Uy Zsz Uz :ZVZ’ (7
T - T,
O = *
7;_ Tw’
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and for the vapour phase

x} = LX%, x3 = LX}%,
V¥ vy
v, = f VT, U; = f V;‘, (18)
where the representative length L = (vZ/g)*.

Upon introducing a stream function ¢ defined

by
oy

Ps a—Xla (19)

oy
PV = ”’a_xz’ pY, = —
the required similarity solution (see, for example,
references [4, 5]) of the liquid film equations
(1-6) is in the form:

¥ =@X)}Fam), 6 =G,

4= p(ax)E,  (20)

where ¢ is a constant to be determined. Here n
is the similarity variable defined by

= Xz (4X1)* 1)

where X, is the Howarth-Dorodnitsyn variable :
X2

(22)

Xz = jﬁdXZ.
J Ps

The velocity field is related to F by
= (vg)* (4X,)* dF/dn,
= ~ L0t axy)

)5}

{<3F -7 3—:;

the physical thickness of the liquid film is
determined by the expression
¢

5 = (2/g)* (4X ) f % dn. (24)
0

Accordingly the liquid film equations (2-5)
reduce to the ordinary differential equations:

pu d*F d?F dF\?
— — | +3F-—= —2(—
ss dn’) dn? dn
p—ps

+ 8
p

(25)
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and
d ”k dG\ | 3p, S p46 _ .
ok dn c,, dn

The condensate property relations (6) take the

simple form:
} 27

Similarly, for the vapour phase, on intro-
ducing a stream function y* defined by
oyr*

(26)

p p(G’ w? ), c = c (G, W,T)’

p=uGT,T) and k=hG;T,T).

<D

<

*
™

the corresponding similarity solution of equa-
tions (7-9) is in the form:
Y* = (4X1} F**) (29)

where n* is the vapour phase similarity variable
defined by
n* = X3/4X1* (30)

The vapour velocity field is related to F* by

2 —%
=i XD, ()
-4
vE = —v:(fg‘-) (@X1) "t (3F*
— i dF¥/dn*).  (32)

The vapour phase equations (7-9) reduce to the
following ordinary differential equation:
dF* 2
—a +3F*—— -2 — =0
dr]*3 + dn* 0
In the new variables # and 5* the location of
the liquid—vapour interface at any station X, =
X% is given by n = ¢ in the liquid phase and
n* =0 in the vapour phase. The physical
boundary conditions (11) and (12) together with
the interfacial matching conditions (13-15) are

(33)
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equivalent to

F=dF/dn=G=0 at n=0; (34)
1k
G = 1,dF/dp = > dF*/dp*,
vS
_ 3V s 2 2
F= . F*, d*F/dy
vEux
=" gpea, ot n=¢: 09
dF*/dn* - 0atn* - oo, (36)
and finally the heat balance transforms to
Pk dG) hy,
—) —-—=L __F
3psksPrs (dr, n=0 cp(T.; - Tw) (¢)
dﬁ
T, d[c dG
+ 1FIG + —= =5 )| +—
Ml w)es
¢ T, 1, dF
+ |2 G+ ¢ - E —
c( (T - Tw)) T, - ijdn}d"
= 0. (37

Thus the problem of laminar film condensa-
tion on a vertical flat plate has been reduced to
to the solution of an eighth-order, three-point,
boundary-value problem defined by the differ-
ential equations (25, 26, 33) subject to the
boundary conditions (34-37). The next section
briefly describes the numerical procedures used
in obtaining solutions for the condensation of
steam at 100°C and atmospheric pressure.

NUMERICAL SOLUTIONS FOR THE
CONDENSATION OF STEAM

Property values

For the condensate the physical properties
are taken to be those of saturated water at the
appropriate temperatures. The data for satur-
ated water are taken from tables compiled by
Mayhew and Rogers [13]. In cgs units these
experimental values are adequately represented,
as is discussed in [14], by algebraic expressions
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in the form:
10 ) 10 .
p = Z Aigl, Cp = Z B,—O', l
i=0 i=0
10 . 10 .
n=exp(y CH), k=exp(}, Die'),J
i=0 i=0

where 6 = (T — 50°C)/50°C; the numerical
values of the A,. B;, C; and D; coefficients are listed
in [14]. Data is required for the gradient dc,/0T.
The experimental data for c, is first smoothed
using localized quadratic smoothing formulae
(see Buckingham [15]) and acceptable values of
0c,/0T obtained for 0 < T < 100°C. The
method of least squares gave the “best fit” for
these values as

(38)

0c,J0T = 3 E[(T ~ 30°C)/5°C]'
i=0

for 0< T <100°C; (39)

for saturated water the coefficients E; are:
Eo,= —260 x 1075 E, =418 x 1077,

E,= —063 x 107° and E; =403 x 107"
The property values p¥, ci, p¥, k¥, h, for
steam at 100°C and atmospheric pressure were
taken from [13].
For convenience some specimen values of the
physical properties used in the calculations are
listed in Table 1.

Solutions

Numerical solutions for the laminar film
condensation of steam have been obtained for
T, = 0, 10, 40, 70 and 90°C. The integrations of
the differential equations (25, 26, 33) subject to
the boundary conditions (34-36) were per-
formed using Gill’s modification of the Runge—
Kutta method. The scheme adopted for the
numerical solution of the three-point boundary-
value problem is as follows. Given T,,, estimates
of ¢ and the initial values (sz/dnz),FO and
(dG/dn),-, are obtained using the constant
fluid property model of Nusselt [1]. For this
value of ¢ the system of equations are solved
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Table 1
Phase Water Steam
T = 0°C T, = 100°C T* = 100°C
p, (g/cm?) 09998 09578 0-5977 x 1073
¢p (cal/gdegC) 1-0055 1-0075
4, (g/cms) 1-782 x 1072 2:812 x 10?3 1:245 x 1074
v, (cm?/s) 1-782 x 1072 2936 x 1073 2:083 x 107!
k, (cal/scmdegC) 1-316 x 1073 1-631 x 1073 5735 x 1075
Pr 13-616 1-7370
hp (cal/g) 53883

iteratively. The left-hand side of equation (37) is
then computed. The estimate of ¢ is slightly
perturbed and the iterative process repeated,
ending with a second estimate for the left-hand
side of (37). A new estimate of ¢ is obtained and
the complete process repeated until the heat
balance (37) and the vapour phase condition (36)
are simultaneously satisfied. During the course
of the numerical work it was established that
the dissipative term involving dc,/0T occurring
in the heat balance was negligibly small.

The unknown characteristics (d*F/dn?),-o,
(dG/dn),=, , ¢, and F(¢) have been rounded off
to four decimals and are listed in Table 2. In
Table 3 the velocity functions F and F* and the
temperature function G are given for T,, = 0°C
and T, = 100°C.

SUMMARY OF KNOWN THEORETICAL
RESULTS ON FLOW AND HEAT TRANSFER
Before presenting a general discussion of the

numerical results it is convenient at this stage

to give definitions of certain flow and heat-
transfer characteristics and the relevant relations
obtained ky other workers. The most important
results of practical interest are the mass flow and
heat transfer. The mass flow or condensation
rate is defined as

]
r,, = { pv, dx,. (40)
0

The local wall heat-transfer coefficient h,, and
Nusselt number Nu,, are defined as

h — q — (kaT/axZ)xz=0 s
* L-T, I.-T,

h
Nu,, = xlkn; @41)
for a section of plate, length I, the average wall
heat-transfer coefficient h and average Nusselt
number are then defined by
l

1 Ih
h = Tjhxl dxl, Nu —T

0

(42)

Table 2
L]
2 2 L d
T, - T, (@*F/dn*),=0 (dG/dn),=o ¢ F(¢) P n
()

100 01104 1-5439 0-7485 0-0440 0-7284
90 0-1423 1-5831 07070 0-0426 0-6891
60 0-2378 1-7803 0-5859 0-0354 0-5747
30 0-3054 2-2148 0-4559 0-0233 04511
10 02910 3-0400 0-3303 00109 03295
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Table 3

Phase Water (T, = 0°C) Steam (T, = 100°C)

dF d?F dG dF* 3 d?F* ;
']/¢ F x 10 (dr,) x 10 (dr]2> x 10 G (dr,) 71* F* (d *) x 10 (m) x 10
0-00 0-0000 0-0000 1-1041 0-0000 1-5439 00 09944, i 4698 —0-4399
0-05 0-0008 0-0442 1-2582 00570 1-5052 01 09945, 1-0895 —0-3264
0-10 0-0034 0-0940, 1-4027 01127 1-4716 02 09946, 0-8073 —-02422
0-15 0-0079 0-1490 1-5325 0-1671; 1-4392 03 09947, 0-5979 —0-1797
0-20 0-0146 0-2085 1-6447 0-2205 1-4122 04 09947, 0-4425 —0-1333
025 00236 02719 1-7375 02729 1-3905 05 09947, 0-3272 —0-0989
0:30 00350 0-3383 1-8095 0-3246 13723 06 09948, 0-2417 —00734
0-35 0-0489 0-4070 1-8589 0-37565 1-3558 07 09948, 0-1782 -—0:0545
0-40 0-0655 04771 1-8840 0-4261 1-:3405 08 09948, 01312 —00404
045 0-0856 0-5477 1-8833; 04760 13267 09 09948, 0-0962 —00299
0-50 0-1064; 0-6178 1-8558 0-5254 1-3146 10 09948, 00703 —00222
0-55 0-13085 0-6863 1-8003 0-5744 1-3039 1.1 09948, 00511 —0-0165
0-60 0-1578 0-7522 17156 06230 12941 12 09948, 0-0368 —00122,
0-65 0-1871 0-8143 1-6001 0-6713 1-2848 1:3 09948, 0-0262 —0-0091
070 0-2187 0-8716 1-4540 0-7192 1-2760 144 09948, 00183, - 00067
075 02523 09227 12747 0-7668 1-2682 1-5 09948, 0-0125 —0-0050
0-80 0-2876 0-9665, 1-0620 0-8141 1-2614 16 0-0082 —0-0037
0-85 0-3245 10018 0-8153 0-8612 1-2537 1-8 0-0026 -~ 00020
090 0-3625 1-:0271 0-5337 0-9079 1-2422 2:0 0-0000 —0-0011
095 0-4012 1-0412 0-2160 09541 1-2275 22 — 00006
1-00 0-4403 1-0428 —0-1382 1:0000 1-2278 24 —0-0003

Constant fluid property model investigations

The original theory according to Nusselt [1]
involved the solutions of equations (3) and (5)
subject to the boundary conditions:

0
0,(0)=0, T(O) =T, (i> ~ 0,
0x, xz—é
TG =T, (43)
together with the simplified heat balance:
oT dr
k{— =h = 44
(ax2>x2=0 Je dx, “4)

Terms involving inertia forces and convective
heat transfer were neglected as well as the effect
of interfacial shear. Nusselt obtained the follow-
ing results:

1{x,\?
=<1 )"’ PR [5 2(5;) ]

T=T,+(L-T)% @9

Uy
(4x 19)%

X1

the local film thickness of the condensate layer is :
= (/2)x, (A,,PrK)"%  (46a)

where A, = gp(p — p¥)x3/u? is the ratio of the
gravitational buoyancy force to the viscous
force, Pr = c,u/k is the Prandtl number and
K = hg/c (T, — T,) is the ratio of the latent
heat of the vapour to condensate enthalpy
changet. For the condensation rate and heat
transfer Nusselt’s theory yields

Ty, = 3pA,,0,,/%:), (46b)
h,, = k(A Pr K)*/(x,/2), (46¢)
u,, = (A, PrK)/ /2, (46d)
and finally
h=%h, Nu=$%Nu, (46¢e)

On including the effect of thermal convection,

t In analogy with the dynamically similar free convection
flow on a cooled vertical wall the dimensionless group A4, is
effectively a condensate Grashof number.
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Rohsenow [3] obtained the heat-transfer ex-
pression

= (1 + 0-68/K)* hY ;

the superscripts R and N denote the values
obtained by Rosenhow and Nusselt respectively.

Further investigation by Chen [6], to include
the effects of inertia forces, thermal convection
and interfacial shear. yielded the results:

47)

1+ 06 1 ! !
- + 811<+002P Iiz s
1+085Pr—K—015P e
and
r<=r¥ ? {1 + 0-375—1 + 0'020——1—~
i *pl K PrK?
— 00005 21 K3} (48b)

Relations (48a) and (48b) agree, to within one
per cent, with the boundary-layer calculations
of Koh, Sparrow and Hartnett [5] when Pr > 1
and K = 5.

Variable fluid property model investigations

To date the effect of variations in the physical
properties of the condensate have been con-
sidered in relation to Nusselt’s model [1]. These
improvements, due to Drew [7], Voskresenskiy
[8], Labuntsov [9] and Minkowycz and
Sparrow [10], will now be considered in some
detail since they are particularly relevant to the
results given in the present paper.

On neglecting the effects of inertia forces,
convection transfer and interfacial shear, the
governing equations of motion (1-5) for the
condensate are:

O (o) 2
5x2 Hax2 -

0 oT
5‘("7) =0

—(—-pDy 49

(50)
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and by virtue of equation (50) the heat balance
becomes

dar,, , oT

=k o

hfg dx, (51)

= const.
The boundary conditions are given by equation
(43) and the fluid property relations by (6). Note
that ¢, does not appear in this model since the
convective heat-transfer term in (50) is omitted.
The liquid-phase similarity variables [see equa-
tions (17) and (20)] are introduced as follows:

Xy = LXI’ Xg = LX2,
Vs ~
5= LX), v =X,
. T-T, .
g(f) = T 1= X,/4X )3,
2\ %
L= (”—) . (2
g

Consequently equations (49—51)and the property
relations (6) simplify to

pdf P = ps f)
_LT b 0)=(=) =0,
dn(us dn) no 1O° ( dii /5

(53)
d [k dg
—|—=2]=0, 0)=0, =1 (54
dﬁ<ks dﬁ) 60 = 0.96) = 1. (59
é
P i kdg_
3PrsKsts fdij= K di const., (55)
1]
and
p=pg;T,T), p=pgT,T)
and k = k(g9 w )9 (56)
respectively.

It is convenient to choose the dimensionless
temperature g, instead of #, as the independent
variable (see Carslaw and Jaeger [16]. For, from
equation (54),

KEd
k dg’

(57)

&le
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where the constant E is
1

dg, 58
zj g (58)
and so equation (53) becomes:
d (kpudf p—pt k
—=EE Y 5
d&mg PR

subject to the boundary conditions
f=0atg=0 and df/dg=0atg=1; (60)

the heat balance (55) transforms to:

evaluated.
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and

(66)

g 1
. (k. [k
n/é—jksdg/JEdg
0 0

Expressions (64) and (65) have, according to
Labuntsov [9], been derived by Voskresenskiy
[8].1 The relevant integrals have been evaluated
approximately by Labuntsov [9] on assuming
that the density of the condensate is independent
of the temperature and that the conductivity
and viscosity are temperature dependent as
follows:

j kp fdg = E*/3Pr,K,. (61) k =k, + glks = k (67)
ksps
and
The differential equation (59) subject to (60) is 11 1 1
readily integrated, and on using (58) and (61) -—=—+ g(— — ——) (68)
flow and heat-transfer characteristics can be I Bs  Hw
Labuntsov obtains the result:
k k2 2 3
30+ 85-2 + 76> +19E—+& 5+20£+29k2 +16k3
k2 k3 k, ki k) 69)

(T, T) = Cs)x b

280

The condensate velocity is given by

g2=4g g2=1
PrK; kus k (p—p* d
4xlg ksﬂ k ps gl
270 gy /dT, T (62)

the flow and heat-transfer characteristics are:

1
6:1 _ Ps* i E .
(6val)s - (1 B ps) jks dg/e(Tw’ T.;), (63)
[1]
d h ps*\7*
X1 X1 ) 1 _ T ; T; ; 64
), ), ( ps> «T, (64)

and suggests, for 05 < k,/k, <2 and 01 €
w/is < 1, that expression (69) is adequately
represented by the simpler result:

kaps\*
6( ws s)“(k:;:) .

Ignoring the negligibly small density factor
on the right-hand side of (64) it is seen that the
Voskresenskiy factor ¢(T,,; T,) gives the effect of
variable physical properties of the condensate
on flow and heat transfer. The alternative
approach, of Drew [7], to account for the effect

(70)

t At present the authors have been unable to obtain a
copy of the paper by Voskresenskiy [8].

g2=43

the factor «T,,; T)) is given by
1
kp kus
ksps kspt
(1]

C(TW;T;)={3J'

g3=0 g2=

g1=1

kp—pt
ke ps

g1=g92

(65)

+
dgl) dgz] dg 3}
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of variable physical properties is to use Nusselt’s
formulae [see equations (46)] with the property
values taken at an effective reference tempera-
ture. To derive this approximation Drew has
assumed that p and k are independent of the
temperature and u varies inversely as the
temperature as given by expression (68). Re-
turning to (65) a simple integration yields the
k3p(p B ps*)

resulit:
1
«T,; T) ={ 32 s [—w
1
+ 025 (l - L)]} . (T1a)
#S I’tw

Thus the effect of variable viscosity is accounted
for by evaluating the viscosity in the Nusselt
formula at reference temperature T, Drew
further assumes that p and k in (71a) are evalu-
ated at this reference temperature. In a similar
fashion the Voskresenskiy factor can be approxi-
mated by the result:

k3 s\ T : *
ain {5

where p, k and u are evaluated at the effective
reference  temperature Ty_s= T, + 031
(T, - T,), as deduced by Minkowycz and
Sparrow [10].

In Table 4 the Voskresenskiy factor (T, ; T) is
evaluated for saturated water using the
Labuntsov expressions (69) and (70), the Drew
expression (71a) and the Minkowycz and
Sparrow expression (71b). Exact numerical
values of the triple integral have been com-

(71b)
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puted with the property relations (38) by
representing the integral as three first order
differential equations and solving these by
Gill’s modification of the Runge-Kutta method.
The agreement between the exact values for
¢(T,, T)) and those for the Labuntsov equation
(69) is nearly precise. However, it should be
remarked that ¢ depends on the fourth root of
this integral and in general it does not follow
that the simple property relations (67) and (68)
should replace those given in (38). Moreover
in the derivation of (69) p has been replaced by
p, and once again the fourth root helps to mask
the small order effects due to density variations.
Finally, the values of ¢(T,,; T, as given by either
the Drew expression (71a) or the Minkowycz
and Sparrow expression (71b)are seen to be more
accurate than those obtained using the
Labuntsov expression (70). The latter result is
not surprising since in [10] the reference
temperature T, _g has been deduced from
numerical solutions of equations (53) to (55)
using accurate values of p, u and k with the
temperature difference (T, — T,) varying from
1 to 25°C.

DISCUSSION OF RESULTS FOR THE
CONDENSATION OF STEAM

In the following sections the variable fluid
property similarity solutions obtained for the
laminar film condensation of steam are dis-
cussed in relation to the known constant fluid
property solutions [1-6] and the approximate
variable fluid property solutions [7-9].

Table 4
k Labuntsov, Labuntsov, Drew, Minkowycz

T.- T, vg ;ia’lﬁe equation equation  equation and Sparrow,

(69) (70) (71a)  equation (71b)
100 0-7202 0-7286 07324 0-7149 0-7270
90 0-7541 07577 07738 0-7467 0-7628
60 0-8492 0-8477 0-8753 0-8420 0-8574
30 09315 09297 09478 0-9268 09335
10 0-9813 0-9780 09845 09797 09828
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Velocity and thermal profiles

Representative velocity and temperature func-
tions are given in Table 3 for the condensation
of steam at 100°C in the extreme case when the
wall temperature T,, = 0°C. It is seen that the
condensate velocity profile has nearly zero
slope at the interface. In fact the shear stress
changes sign at n/¢ = 0-98. Note also that the
vapour inflow velocity [as calculated using
expression (32)] is virtually constant.

In Fig. 1 dimensionless velocity profiles
v,/(4x,9)* are given for T,, = 0°C and T, =

G. POOTS and R. G. MILES

and calculated using the variable property
relations (38). The liquid phase velocity profiles
due to Nusselt, Voskresenskiy and that of the
present paper are identical when T, = 90°C.
In fact as T, — T, the combined effects of
inertia forces, convective heat transfer, inter-
facial shear and variable physical properties are
negligibly small. This result has already been
established by Koh, Sparrow and Hartnett [5]
in the stipulation that for a constant fluid
property model these effects can be neglected if

. . . h
90°C, respectively. Physically the liquid and PrzlandK=—72 _ >5
vapour velocities are continuous at the interface, (T, - T,)
12— ‘
s
-0~ 0, §=|oo/-{,,~
08— /
1om Y/,
(4x,y)’2 //.

0-6 P,

/ —

/ o
T / o =100
A
o2 / for
/ 4
/
L 1 1 J
02 04 06 o8 +OO-0 -0 20 30
/¢ 7

FiG. 1. Representative dimensionless velocity profiles for T, =0 and 90°C; Voskresenskiy

—+—-—, Nusselt ——-———-—

n/¢ =1 or n* =0, and the apparent dis-
continuity shown graphically is due to the
method of plotting. These profiles are compared
with (a) the Nusselt profiles given by expression
(45) with property values taken at effective
reference temperatures 7, = T, + (T, — T,)
with g = 033 for T,, = 0°C and B = 0-26 for
T, = 90°C, respectively,f and (b) the related
Voskresenskiy profiles given by expression (62)

t+ These values of the reference temperatures are ob-
tained on correlation of wall heat-transfer coefficients
obtained using Nusselt’s constant fluid property model with
the calculated variable fluid property results. The correlation
procedure will be discussed later, see expression (81).

present calculation

For T,, = 0°C these combined effects are more
apparent. At the interface the condensate
velocity in the Voskresenskiy theory is +12 per
cent in error. It follows, since inertia forces and
convective terms are probably negligible, that
this discrepancy is due to the neglect of vapour
drag at the interface. It should be noted that for
the velocity profile in the case T, = 0°C, the
close overall agreement between the present
calculation and that due to Nusselt has been
achieved using an effective reference tempera-
ture. With f = 0-33 the condensate velocity at
the interface is in error by —6'5 per cent whilst
using 8 = 0-31, as proposed by Minkowycz and



LAMINAR FILM CONDENSATION

Sparrow [10], for correlation of heat-transfer
results the error is — 11 per cent.

The liquid phase thermal profile (see Table 3)
is nearly linear indicating that heat-transfer by
conduction is dominant. For example, in the
case T, = 0°C, the maximum deviation from
the linear profile is only + 6-5 per cent occurring
at approximately n/¢ = 0-4. Such deviations
are probably due to the effect of variable
conductivity rather than to the inclusion of
convective heat-transfer etc., in the governing
equations. In this connexion it is interesting to
point out that the dimensionless temperature
function G, (as given in Table 3) when rounded
off to three decimal places, is identical to the
dimensionless conduction profile in fully de-
veloped Couette flow of water when the fixed
plate is maintained at a temperature 0°C and
the moving plate at a temperature 100°C (see
[14])

FILM THICKNESS AND CONDENSATION RATE

The condensate film thickness is determined
by expression (24); the integral

¢

P,

—=d
jp !

0
is tabulated in Table 2 for various AT= T, — T,

o
It is convenient to consider the dimensionless
ratio:

¢
6x ps*> *j.ps
o 1= Pk b | Poa, (12
@), {( y } p o (72
]

where (87,), is the Nusselt film thickness defined
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by equation (46a) and evaluated at the tempera-
ture T, = 100°C. Similarly for the condensation
rate the relevant dimensionless ratio is

*\—%
(ﬁ’:‘) = 3(1 - ) (Pr. K F(9);  (73)

F(¢) is tabulated in Table 2 for various AT.
The dimensionless ratios 8, /(0% ), and I', AI'Y,),
are given in Table 5 together with the percentage
deviation of the Voskresenskiy formulae [equa-
tions (63. 65. 38) for &, /(6%,), and (64. 65. 38) for
r,/r¥),] and the approximate Labuntsov
formula [equations (64) and (70) for I', AT'Y),],
respectively. Obviously the neglect of interfacial
shear in the Voskresenskiy theory produces the
observed small over-estimation in the di-
mensionless film thicknesses and condensation
rates. In the extreme case T,, = 0°C the percent-
age deviation of the Voskresenskiy formulae for
the dimensionless condensation rate is + 2-5.
It is interesting to compare this latter result
with that obtained from the constant fluid
property model developed by Chen [see ex-
pression (48b)]. Using the Drew reference
temperature T;, the dimensionless condensation
rate I'S /(I'Y), is in error by at most —4-4 per
cent when T,, = 0°C. Further calculation yields
the effective reference temperature to be used in
conjunction with the Chen expression (48b). If

7; = Tw + aC(T; - Tw)’ (74)

and

T - T T. — T.\?
aC=ag+af<sT w)+a§<“T ">. (75)

Table 5
T T s, Per cent deviation I, Per cent deviation of
s (%), of Voskresenskiy ('), Voskresenskiy Labuntsov

100 1-271 14 0-7028 25 42
90 1-235 11 0-7356 2-5 52

60 1-138 06 0-8297 2:4 55

30 1-064 0-04 09184 1-4 32

10 1-023 —-0-10 09780 04 07
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the method of least squares gives the “best-fit”
for the Chen expression as

e _ Tsy
(i) (@3

with af = 02959, af = —0-1437 and aof =
0-1646, respectively.

(76)

HEAT-TRANSFER RESULTS
The characteristic quantities representing the
heat transfer at the wall are h, and Nu, as
defined in equation (41). In terms of the dimen-
sionless variables (20) and the Nusselt expression
(46¢) the dimensionless ratio involving the local
wall heat-transfer coefficient is
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less than that calculated from the Voskresenskiy
theory. The actual local heat-transfer coefficient
must then increase accordingly.

The alternative approach to allow for the
effect of variable fluid properties is now ex-
amined. Using the Drew reference temperature
T, the dimensionless ratios (hY,)p/(hY), (hR)p/
(hY)s, and (h$),/(hY ) are in error by —58,
—29 and —3-5 per cent, respectively, when
T,, = 0°C. In this extreme case the correspond-
ing error in (kY )/(hY ), using the Minkowycz and
Sparrow reference temperature T, g is —1-4
per cent. This close agreement is due to the
judicious choice of the reference temperature
Tys_s since the actual error in the Voskresenskiy
theory is —3-3 per cent. Precise agreement

* -1 . .
L p_w_’fz [(1 - p_s) Pr.K, (d_G_> between the various expressions for the heat-
(h s Psks Ps dn /=0 transfer coefficients due to Nusselt, Rohsenow
(77) and Chen, respectively, and those obtained on
and similarly for the local Nusselt number the present paper can be.achleved by evaluar ing
all the properties appearing in these expressions
Nu,, ks hy, 78) at the reference temperatures:
(Nugl)s kw (hgl)s ’ ’I; = Tw + ﬂ(T; - Tw)’ (79)
values of (dG/dn), are given in Table 2 for where )
various AT. The dimensionless ratios h, /(h},), B =B+ B ﬁ_ + B AT _ (80)
and Nu, /(Nul ), are given in Table 6 together 0 "\T, T
Table 6
h Per cent deviation Nu Per cent deviation
7; - Tw - =
(B2 Voskresenskiy Labuntsov (Nuz), Voskresenskiy Labuntsov
100 0-7448 -33 —22 0-9233 —34 —17
90 0-7762 —28 —24 09220 —28 —-03
60 0-8631 —-16 —-18 09298 —16 14
30 09376 —0:65 —08 0-9584 -0:60 11
10 09826 —013 —045 09870 -012 -021

with the relevant percentage deviations of the
Voskresenskiy formula [equations (64, 65, 38)]
and the approximate Labuntsov formula [equa-
tions (64) and (70)]. It is seen that the Vos-
kresenskiy theory yields maximum under-
estimates of —3-3 and — 3-4 per cent in h, /(hY),,
respectively, for the extreme case T, = 0°C
Due to vapour drag the actual film thickness is

The method of least squares was employed to
obtain the coefficients 8,, §; and f,, so that

he, _ (B,
).~ (),

for the Nusselt formula and similar expressions
for the Rohsenow and Chen formula. These

81)
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calculations have been repeated to give cor-
relations of the form:

Nu,  (Nu}),

W), = (), ®2)

The least squares estimates of the coefficients
Bo» B: and B, are listed in Table 7. It is pro-
posed that the above reference temperatures are
valid for the complete range of wall temperatures
T, = 0-100°C. For example, in the evaluation
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on heat-transfer coefficients, according to
McAdams [7], are at most 28 per cent higher
than those deduced from Nusselt’s theory using
the Drew reference temperature. The resulting
discrepancy, of order 22 per cent, between
experiment and the present results is known to
be caused by surface tension. Kapitsa [17] has
shown that for a critical Reynolds number
Re, =4I, /u, > 33 waves begin to form on
the surface of the laminar film. Kapitsa has also
shown that the average film thickness is reduced,

Table 7
By JORY), Nu, /(Nuf,),
5 (] ﬁ i 6 2 ﬁ 0 B 3 B 2
Nusselt 02474 0-1580 —0-0769 0-5371 ~0-4819 0-6478
Rohsenow 0-1602 01649 - 00356 0-3490 ~0-2323 0-4832
Chen 02228 0-1003 —~0-0255 0-4852 - (4845 06448

of the rates (hY,),/(h}), the values for the co-
efficient B are 0-33, 0-325, 0-31, 0-30 and 026
when T, — T, =100, 70, 40, 30 and 10°C,
respectively. Thus for small temperature differ-
ences of order 10°C the Drew coefficient § =
0-25 can be adopted as this gives a maximum
error of less than 003 per cent. Even for AT <
30°C the maximum possible error using the
Drew coefficient is 0-5 per cent whilst the
Minkowycz and Sparrow coefficient f = 031
yields a maximum error of 02 per cent.

CONCLUDING REMARKS

It has been shown, from the variable fluid
property similarity solutions, evaluated for the
laminar film condensation of steam, the wall
heat-transfer coefficients, obtained using Nus-
selt’s constant fluid property model with Drew
reference temperature, are in error by at most
—58 per cent. This discrepancy is due to the
neglect of the non-linear effects of variable
physical properties in the condensate and the
effect of vapour drag; effects due to the omission
of the inertia forces and convective heat transfer
are unimportant. However, experimental data

thus leading to a corresponding increase in the
heat-transfer coefficient. In practice the effect
of ripple formation on the surface of the laminar
film is accounted for by using a correction factor
of 12, Further references dealing with the
correlation of experimental data, to account for
surface tension effects, are given by Kutateladze
[18] and in the review paper by Chisholm and
Provan [19].
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Résumé—Une étude théorique a été faite sur la condensation en régime permanent par film laminaire
bidimensionnel de vapeur d’eau saturée pure 4 100°C et & pression atmosphérique sur une paroi verticale
isotherme. Les propriétés physiques variables du condensat sont supposées étre celles de 'eau saturée
aux températures convenables. En négligeant les effets de la tension superficielle & 'interface liquide—
vapeur, les équations de base pour les phases liquide et vapeur sont simplifiées en employant les approxima-
tions de la couche limite et elles admettent une solution en fonction des variables de similitude. A partir
des solutions numériques des équations différentielles ordinaires qui en découlent, les caractéristiques
de I’écoulement pour les phases liquide et vapeur sont déterminées pour des températures de paroi de 0,
10, 40, 70 et 90°C. Les résultats correspondant au transport de chaleur 4 la paroi et au flux de masse dans
la phase liquide sont présentés et comparés en détail avec ceux des théories existantes.

Zusammenfassung—Fine theoretische Untersuchung wurde durchgefiihrt fiir die stationire, zweidimen-
sionale, laminare Filmkondensation von reinem geséttigten Dampf bei 100°C und Atmosphérendruck an
einer isothermen senkrechten Wand. Als die verénderlichen Stoffwerte des Kondensats werden jene des
gesittig en Wassers bei der entsprechenden Temperatur verwendet. Bei Vernachldssigung der Einfliisse
der Oberflichenspannung an der Flisssigkeits- und Dampfgrenzfliche lassen sich die Bestimmungs-
gleichungen fiir die fliissige und gasférmige Phase durch Grenzschichtniherungen vereinfachen und
ergeben eine Losung in Form von Ahnlichkeitsvariablen. Aus numerischen Losungen der sich ergebenden
gewohnlichen Differentialgleichungen werden Strémungskomponenten fiir die fliissige und die dampf-
férmige Phase fiir Wandtemperaturen von 0, 10, 40, 70 und 90°C bestimmt. Die zugehorigen Ergebnisse
fiir den Wirmeiibergang und den Massenstrom in der fliissigen Phase werden angegeben und im einzelnen
mit Werten anderer Theorien verglichen.

Aunorarua—IIpoBeneHo reopeTuyeckoe necae0OBaHKe yCTAHOBUBIIEHCA 1By MEPHOM! TaMHHAD-
HOM NJIGHOYOHO# KOHAEHCALMM YNCTOrO HACkEeHHOro napa npu 100°C u arMocdeprom nasie-
HUM HA MB0TEpMMYecKod BepPTHKaAbHON cTeHKe. 3a nepemeHnnle @uanyeckue CcBOHCTBA
MUAKOTO KOHAEHCATa B3ATH (JU3NYECKHe CBOMCTBA HACHIEHHOM BOK IPH COOTBETCTBYIOUINX
Temneparypax. [IpeneGperas BIUAHUEM NOBEPXHOCTHOTO HATAMKEHHA HA rPaHULe passiena $as
HUIKOCTL-TIAP MOMHO YIPOCTHTH OCHOBHHE YDABHEHUA JUJIA KUIKON M mapoBoit dgas myrem
HCTONb30BAHNA NPUGIMKEHNH TOrPAHMYHOTO CJIOA M IOJYYUTh pellieHHe B MEpPeMeHHHX,
N03BOJAOMNX CBETH 3a1a4y K aBTOMOAenbHO!. Ha 0CHOBe YHMCIeHHBX pellieHnl oMy YeHHBIX
OGHYHEX AUpPepeHIMaIbHEIX YPABHEHUH MOKHO ONpeJeNNTh XaPAKTEPUCTUKU [OTOKA NJIA
MUAKOR M naposoft ¢as npu remmeparypax crewku 0, 10, 40, 70 u 90°C. Ilonyyennte
PeayNBTATH [IA TENJI000MeHa HA CTeHKe M NOTOKA MAaccH B HUAKON Qase NeTANLHO CPABHU-
BAJIACH C PE3YJNBTATAMU CYILECTBYIOWIMX TeOpHit,



