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Ah&net-A theoretical study is made of steady two-dimensional laminar film condensation of pure 
saturated steam at 100°C and atmospheric pressure on an isothermal vertical wall. The variable physical 
properties of the liquid condensate are taken to be those of saturated water at the appropriate temperatures. 
On neglecting the effects of surface tension at the liquid-vapour interface the governing equations for the 
liquid and vapour phases are simplified, using boundary-layer approximations, and admit to a solution in 
terms of similarity variables. From numerical solutions of the resulting ordinary differential equations 
flow characteristics for the liquid and vapour phases are determined for the wall temperatures 0, 10,40,70 
and 90°C. The related results on wall heat transfer and mass flow in the liquid phase are presented and 

compared in detail with those from existing theories. 
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NOMENCLATURE Greek symbols 
= gp@ - p~)~~/~~, a dimensionless 6, local thickness of condensate film; 

group ; PY density ; 
specific heat ; Pl viscosity; 
dimensionless velocity and thermal o T - T, dimensionless 
functions ; 

=--- 
temperature ; 

acceleration due to gravity; 
T, - T,‘ 

r, condensation rate. 
local heat-transfer coefficient ; 
latent heat of condensation ; Subscripts 
thermal conductivity; s, saturated ; 
= h,,/c,,(T, - T,,,), a dimensionless ,+,, wall ; 
group ; 
pressure ; ii 

reference ; 
Drew reference ; 

CP 
= +, the Prandtl number ; 

i-S, Minkowycz and Sparrow reference. 

= 4I’/p, film Reynolds number ; Superscripts 
temperature ; * vapour phase ; 

condensate velocity components in & Nusselt ; 

the x1, x2 directions; R, Rohsenow ; 
vapour velocity components in the C, Chen. 

. . 
XT, xz drrectrons ; 
Cartesian coordinates in liquid INTRODUCTION 

phase ; THE MECHANISM of laminar film condensation 
intrinsic coordinates in vapour phase. on a vertical isothermal flat plate maintained at 
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constant temperature below the saturation 
temperature of the surrounding quiescent vapour 
was first studied by Nusselt [l]. Nusselt’s 
theory consisted of simple force and heat 
balances in the condensate film and ignored 
effects due to inertia forces, thermal convection, 
interfacial shear and the dependence of the 
physical properties of the condensate on tem- 
perature. The effects of thermal convection were 
first investigated by Bromley [2] and Rohsenow 
[3]. To include the effects of thermal convection 
and inertia forces in the liquid film a new 
approach was formulated by Sparrow and 
Gregg [4] using boundary-layer approxima- 
tions. This approach has been extended by 
Koh, Sparrow and Hartnett [S] to include the 
induced motion of the vapour and hence the 
effect of interfacial shear. In both [4] and [5] 
the boundary-layer type equations, as indicated 
by the work of Nusselt [l], yielded solutions in 
terms of similarity variables; the relevant 
ordinary differential equations were solved 
using numerical methods. Using integral bound- 
ary-layer techniques, Chen [6] has considered 
analytically the effects of thermal convection, 
inertia forces and interfacial shear. 

In the foregoing analyses [l-6] the physical 
properties of the condensate are assumed to 
be independent of the temperature. Drew (see 
McAdams [7]) has shown that if, as in Nusselt’s 
theory, the temperature distribution in the 
condensate is linear and on assuming that the 
condensate viscosity varies inversely with the 
temperature then the effects of variable viscosity 
on flow and heat transfer can be estimated by 
using the results of Nusselt’s constant fluid 
property model with the viscosity evaluated at 
the reference temperature 7” = T, + 0.25 (T, - 
T,). Taking the above viscosity variation and 
on further assuming that the condensate con- 
ductivity varies linearly with the temperature 
Voskresenskiy [S] has re-investigated the model 
proposed by Nusselt. In a later paper Labuntsov 
[9] has refined this work, and shown that the 
flow and heat-transfer characteristics may be 
evaluated from the existing Nusselt formula with 

condensate property values evaluated at the 
saturation temperature, provided a simple cor- 
rection factor is used. Obviously if the con- 
ductivity of the condensate is assumed constant 
the modifications to Nusselt’s model proposed 
by Drew and Voskresenskiy, respectively, would 
be identical. In a recent paper Minkowyn and 
Sparrow [lo] have used Voskresenskiy ‘s theory 
for the condensate film in an investigation of the 
effect of air as a non-condensable gas in the 
condensation of steam; other effects due to 
interfacial resistance or temperature jump at 
the liquid-vapour interface, superheating. and 
to variable fluid properties in the steam-air 
mixture were considered. The property values 
for water were taken from Eckert and Drake 

Pll and a new reference temperature 
TM_, = T, + O-31(& - T,) was derived; here 
Td is used to denote the bulk saturation tem- 
perature of the vapour. In particular for the 
condensation of pure saturated steam at atmos- 
pheric pressure and at 100°C the results 
obtained for wall heat transfer using the Nusselt 
theory and the Minkowycz and Sparrow refer- 
ence temperature will be, essentially, equivalent 
to those obtained by employing the Labuntsov 
correction factor as described above. 

It is clear that no general conclusions on the 
combined effects due to thermal convection 
inertia forces, interfacial shear and variable 
physical properties can be drawn from the 
essentially separate constant fluid property 
solutions [2-61 and the relatively simple variable 
fluid property modifications [7-91. Indeed all 
of these effects on flow and heat-transfer 
characteristics are intimately connected. The 
motive for the present investigation is to 
provide further information on the combined 
effects discussed in references [2-91. 

The flow configuration to be studied is as 
follows. An isothermal vertical flat plate is 
inserted in a large volume of quiescent pure 
saturated steam at atmospheric pressure. If 
the plate temperature is T, then provided 
T, < T, the saturation temperature of the 
vapour, steady two-dimensional film condensa- 
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tion will occur on the plate. It is assumed that 
neglected. These equations must be supple- 

laminar flow is induced by gravity within the 
mented with certain fluid property relations. 

liquid and vapour phases. Surface tension 
It is assumed for the condensate 

effects at the liquid-vapour interface are neg- P = P(T), cp = c,(T), 
lected implying that the interface is smooth and CL = p(T) and k = k(T), (6) 
free from waves. 

and moreover this data is available from 

BASIC GOVERNING EQUATIONS FOR 
THE LIQUID AND VAPOUR PHASFS 

Let x1 measure the distance in the downward 
direction along the plate and x2 the distance 
normal to the plate; the leading edge is located 
at x1 = x2 = 0. In the liquid film the velocity 
field is denoted by the components tir and v2 in 
the x1 and x2 directions respectively, and the 
local temperature field by T. The liquid-vapour 
interface is defined by 

experiment. 
In the derivation of the relevant boundary- 

layer equations for the vapour phase it is 
convenient to choose a set of intrinsic coordi- 
nates attached to the interface. Let x7 measure 
the distance along the interface, xr the distance 
along the normal and VT, ul denote the associated 
velocity components. The governing equations, 
expressing conservation of mass and momentum, 
in the vapour phase can be written as the 
boundary-layer equations : 

x2 = 6(x,). (1) au: f 
Because the liquid film is thin all spatial deriva- 

_+!L,, 
ax: ax; (7) 

tives across the film are large in comparison 
to those along the film. Consequently the rate 
of change of velocity or temperature across the 

P3 v: ax: + vt @ = - ax: + PfS 
( 

av: au: 

> 

aP* 

film is large in comparison with corresponding a%: 
changes along its length. The governing equa- (8) 

tions expressing conservation of mass, 
+p”+dx:” 

momentum and thermal energy in the liquid and 
phase now simplify to the boundary-layer 
equations as follows : O=aps 

ax;* (9) 

& (PVl) + $- (PVZ) = 0, (2) In doing so it is assumed that the radius of 
2 curvature of the interface is large compared 

with the thickness of the film (see Goldstein 
[ 121) ; moreover to the same approximation 

O= _ap 
ax,’ 

(3) 

(4) 

x1=x: 

and (IO) 
x2 = x; + 6(x1). 

The physical boundary conditions are: 

PC, ( vl~+v2~)=&~~)5 
where in 

t5) v1fZr”2~~O~orT~~~~x) x ,o}(lI) 

the latter equation viscous dissipation 
T=T, 2 13 107 

and work done against compression have been in the liquid phase, whilst at large distance from 
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the plate in the vapour phase 

v: + 0 as x2+co, x1 > 0. (12) 

It now remains to express conditions for the 
location of the liquid-vapour interface and 
relevant criteria for matching v, p in the liquid 
phase with u*, p* in the vapour phase at this 
location. Obviously four conditions are re- 
qu+ed, three for matching ui, u2 and p and one 
for deducing the form of (1). They are derived as 
in [S] from consideration of the velocities, mass 
flow, shear stresses and the heat flux vector at 
the interface. These conditions are now ex- 
pressed within the frame-work of the boundary- 
layer approximations already used. At the 
interface the tangential components of the 
liquid and vapour phases must be continuous 
giving the condition : 

VI = 0: for x2 = 6(x,), x1 2 0. (13) 

The local mass flux crossing the liquid-vapour 
interface is continuous, and hence : 

x2 = 6(x,), x1 > 0. (14) 

On considering the stress tensor at the interface 
yields the conditions : 

p = p*, av1 * au: 
psax,=ps jjxj for 

x2 = 6(x,)x, 2 0; (15) 

the former condition is true only if surface 
tension is neglected, whilst the latter is valid 
even if surface tension is included. It now 
remains to derive the fourth condition for 
determining 6(x,). This is obtained on applying 
the first law of thermodynamics to a control 
volume of the condensate bounded by the 
planes xi, x1 + dx,, the wall x2 = 0 and the 
appropriate section of the liquid-vapour inter- 
face. The condition is as follows : 

WI) 

+ s PVACJ - c,T) dx, 
0 

dx, dx, 

= 0. (16) 

The various terms occurring in this energy 
balance are readily identified. The first term is 
the heat transferred by conduction from the 
condensate to the plate; the second term is due 
to the latent heat of condensation; the third 
term is due to subcooling of the condensate 
below saturation temperature; the fourth term 
is essentially a dissipative effect associated with 
the convective rate of change of the thermal 
capacity. Within the frame-work of the 
boundary-layer hypothesis viscous dissipation 
and work done against compression are negli- 
gible; the work done by the surface tension at 
the interface has been ignored. Finally, by virtue 
of the interface condition p = p*, and equations 
(4,9) and the boundary condition (12) it follows, 
as is usual in boundary-layer theory, that the 
pressure along a normal to the wall in both 
phases is constant and @/ax, = ap*/ax: = 
p,*g. This completes the formulation of the 
equations for laminar film condensation in 
which the effect of variable physical properties 
within the condensate has been taken into 
account. 

It is convenient to introduce new dependent 
and independent variables as follows: for the 
liquid phase 

x1 = LX,, x2 = LX,, 6 = LA, 

vi = 3 v,, 
L 

v2 = ; v,, (17) 

T-T @=” 
T, - T,’ 
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and for the vapour phase and 

XT = Lx* 19 x; = Lx* 29 

V* * 

V1 = f VT, v; =!K v* (18) 
+ 3P+‘FE = 0. (26) 

L 2’ 
P‘ d? 

where the representative length L = (ul/g)*. The condensate property relations (6) take the 

Upon introducing a stream function I,+ defined simple form ’ 

by p = p(GT T) 7 W) ST 
ati 

Pv, = Psax,’ Pv, = - P,$ (19) 

cp = c&G ; T,, T,), 
(27) 

1 
p = p(G;T,,T,) and k = h(G;T,,T,). 

the required similarity solution (see, for example, 
references [4, 5-J) of the liquid film equations Similarly, for the vapour phase, on intro- 

(l-6) is in the form: ducing a stream function $* defined by 

VQ = (4X,)’ F(V), @ = GM, 
A = &4X,)*, (20) 

* 
v: =g a** 

*’ v: = -ax: 7 (28) 
2 

where C$ is a constant to be determined. Here n 
is the similarity variable defined by 

the corresponding similarity solution of equa- 
tions (7-9) is in the form: 

? = X2/(4X1)* (21) 

where X2 is the Howarth-Dorodnitsyn variable : 
+* = (4X:)‘F*(q*) (29) 

X2 

2, = 
s 

EdX,. 

0 ps 

The velocity field is related to F by 

u I = (‘id* (4X 1)+ dF/dtl, 

u2 = +Js)f(4X,)-+ 

where q* is the vapour phase similarity variable 

(22) 
defined by 

?j* = XZ/(4XT)‘. (30) 

The vapour velocity field is related to F* by 

2 -+ V, y: =v* - 
s 9 

(4X:)+ dF*/dr/*, (31) 

{bF _$ + (4X1)t!!$%)xj ; (23) ‘,* = - vz@+(4X’)-‘(3F* 

the physical thickness of the liquid film is - v* dF*/dq*). 
determined by the expression 

(32) 

4 The vapour phase equations (7-9) reduce to the 

6 = (v2/g)* (4X,)* fi dq 
following ordinary differential equation : 

s 
s P * 

(24) 
0 

d3F* 2 * 

Accordingly the liquid film equations (2-5) 
- + 3F* “d,” 
drj*3 

*z - 2 z 2 = 0. (33) 

reduce to the ordinary differential equations : In the new variables q and ?J* the location of 

+3FE_2 !!!? 
'2 

0 

the liquid-vapour interface at any station X1 = 

drl’ dtl 
XT is given by q = 4 in the liquid phase and 

+ P-Pf 
ft* = 0 in the vapour phase. The physical 

~ = 0, t251 boundary conditions (11) and (12) together with 
P the interfacial matching conditions (13-15) are 
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equivalent to 

F=dF/dq=G=O at q=O; (34) 

G = 1, dF/dr] = zdF’/ds*, 

d2F/dq2 

= !!!$ d2F*/dv*2, at r~=$; (35) 
s s 

dF*idq* + 0 at q* + cc ; 

and finally the heat balance transforms to 

h 

q=o - c&T, ‘” T,) F(4) 

= 0. (37) 

Thus the problem of laminar film condensa- 
tion on a vertical flat plate has been reduced to 
to the solution of an eighth-order, three-point, 
boundary-value problem defined by the differ- 
ential equations (25, 26, 33) subject to the 
boundary conditions (3437). The next section 
briefly describes the numerical procedures used 
in obtaining solutions for the condensation of 
steam at 100°C and atmospheric pressure. 

NUMERICAL SOLUTIONS FOR THE 

CONDENSATION OF STEAM 

Property values 
For the condensate the physical properties 

are taken to be those of saturated water at the 
appropriate temperatures. The data for satur- 
ated water are taken from tables compiled by 
Mayhew and Rogers [13]. In cgs units these 
experimental values are adequately represented, 
as is discussed in [14], by algebraic expressions 

in the form : 

p = f Aif?, cp = f Bit?, 
i=O i=O 

10 10 
/i = exp ( 1 Cie’), 

i=O 
k = exp (igo Die’), J 

where 8 = (T - 5O”C)/5o”C; the numerical 
values of the Ai, Bi, Ci and Di coefficients are listed 
in [14]. Data is required for the gradient &$T. 
The experimental data for cP is first smoothed 
using localized quadratic smoothing formulae 
(see Buckingham [15]) and acceptable values of 
&,/aT obtained for 0 < T < 100°C. The 
method of least squares gave the “best lit” for 
these values as 

ac,/dT = ‘f Ei[(T - 3O”C)/5”C]’ 
i=O 

for 0 d T < 100°C; (39) 

for saturated water the coefficients Ei are: 

E, = -2.60 x 10-5, E, = 4.18 x 10-5, 

E, = -0.63 x low5 and E, = 4.03 x lo-‘. 

The property values pf, cp*,, CL,*, k:, h, for 
steam at 100°C and atmospheric pressure were 
taken from [13]. 

For convenience some specimen values of the 
physical properties used in the calculations are 
listed in Table 1. 

Solutions 
Numerical solutions for the laminar film 

condensation of steam have been obtained for 
T, = 0, 10,40,70 and 90°C. The integrations of 
the differential equations (25, 26, 33) subject to 
the boundary conditions (3436) were per- 
formed using Gill’s modification of the Runge- 
Kutta method. The scheme adopted for the 
numerical solution of the three-point boundary- 
value problem is as follows. Given T,, estimates 
of 4 and the initial values (d2F/dq2),,o and 

Wldtl)q=o are obtained using the constant 
fluid property model of Nusselt [l]. For this 
value of 4 the system of equations are solved 
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Table 1 

Phase Water Steam 

T=O”C T,=loo”C T: = 100°C 

64 (g/cm’) 0.9998 0.9578 0.5977 x lo-’ 
cpr (cal/gdegC) 1.0055 10075 

H (g/cm s) 1.782 x lo-’ 2.812 x 1O-3 1.245 x 1O-4 

v, (cm’/s) 1.782 x lo-’ 2.936 x 1O-3 2.083 x lo- ’ 
k, (Cal/s cm degC) 1.316 x 1O-3 1.631 x 1O-3 5.735 x 1o-5 
Pr 13.616 1.7370 
h,,, (Cal/g) 538.83 

iteratively. The left-hand side of equation (37) is 
then computed. The estimate of 4 is slightly 
perturbed and the iterative process repeated, 
ending with a second estimate for the left-hand 
side of (37). A new estimate of 4 is obtained and 
the complete process repeated until the heat 
balance (37) and the vapour phase condition (36) 
are simultaneously satisfied. During the course 
of the numerical work it was established that 
the dissipative term involving ac,/aT occurring 
in the heat balance was negligibly small. 

The unknown characteristics (d2F/dq2)s=o, 
(dG/dq),,_, , 4, and F(4) have been rounded off 
to four decimals and are listed in Table 2. In 
Table 3 the velocity functions F and F* and the 
temperature function G are given for T, = 0°C 
and T, = 100°C. 

SUMMARY OF KNOWN THEORETICAL. 
RJBULTS ON nOW AND HEAT TRANSFER 

Before presenting a general discussion of the 
numerical results it is convenient at this stage 

to give definitions of certain flow and heat- 
transfer characteristics and the relevant relations 
obtained by other workers. The most important 
results of practical interest are the mass flow and 
heat transfer. The mass flow or condensation 
rate is defined as 

rx, = s” pu, dx,. 
0 

The local wall heat-transfer coefficient h,, and 
Nusselt number Nu,, are defined as 

h,, =-C-c wTiax,),=, 
T, - T, K--T, ’ 

Nu,, = xlh,,. 
k ’ (41) 

for a section of plate, length I, the average wall 
heat-transfer coefficient h and average Nusselt 
number are then defined by 

1 

h = f 
s 

h,,dxl, Na=J 
k’ 

(42) 

0 

100 0.1104 1.5439 0.7485 0.044O 0.7284 
90 0.1423 1.5831 0.7070 0.0426 0.6891 
60 0.2378 1.7803 @5859 OQ354 0.5147 
30 03054 2.2148 0.4559 0.0233 @4511 
10 0.2910 3GloO 0.3303 0.0109 0.3295 
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Table 3 

Phase Water (T, = 0°C) 

44 ~~10 (;)x1o ($)‘l’ G ($ 9* 

0.00 OGOOO 09000 1.1041 OOOOO 1.5439 0.0 
0.05 0.0008 0.0442 1.2582 0.0570 1.5052 0.1 
0.10 oxlO 0@4O, I.4027 0.1127 1.4716 0.2 
0.15 0.0079 0.1490 1.5325 0.1671, 1.4392 0.3 
0.20 0.0146 0.2085 1.6447 0.2205 1.4122 0.4 
0.25 00236 0.2719 1.7375 0.2729 1.3905 0.5 
0.30 0.0350 0.3383 1.8095 0.3246 1.3723 0.6 
0.35 0.0489 04070 1.8589 0.3756, 1.3558 0.7 
0.40 0.0655 0.4771 1.8840 0.426 1 1.3405 0.8 
0.45 0.0856 0.5477 1.8833, 0.4760 1.3267 0.9 
0.50 0.1064, 0.6178 1.8558 0.5254 1.3146 1.0 
0.55 0.1308, 0.6863 1.8003 0.5744 1.3039 1.1 
0.60 0.1578 0.7522 1.7156 @6230 1.2941 1.2 
0.65 0.1871 0.8143 1.6001 0.6713 1.2848 1.3 
0.70 0.2187 0.8716 1.4540 0.7192 1.2760 1.4 
0.75 0.2523 0.9227 1.2747 0.7668 1.2682 1.5 
0.80 0.2876 0.9665, 1.0620 0.8141 1.2614 1.6 
0.85 0.3245 lflO18 0.8153 0.8612 1.2537 1.8 
0.90 0.3625 1.0271 0.5337 0.9079 I .2422 2.0 
0.95 04012 1.0412 0.2160 0.9541 1.2275 2.2 
1 .oo 0.4403 1.0428 -0.1382 1 .oOOO 1-2278 2.4 

Steam (T, = 100°C) 

F* (g x 103 ($) x 102 

0.9944 l 
0.9945, 
0.9946, 
0.9947, 
0.9947, 
0.9947, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 
0.9948, 

1.4698 
1.0895 
0.8073 
0.5979 
0.4425 
0.3272 
0.2417 
0.1782 
0.1312 
00962 
0.0703 
0.0511 
0.0368 
0.0262 
0.0183, 
0.0125 
00082 
0.0026 
O@OOO 

- 0.4399 
- 0.3264 
- 0.2422 
-0.1797 
-0.1333 
- 0.0989 
- 0.0734 
-Al,0545 
- 0.0404 
- 0.0299 
- 0.0222 
-0.0165 
- 0.0122, 
-00091 
- 0.0067 
- 00050 
-0.0037 
- 0+)020 
-0QOll 
- 00006 
-0JxlO3 

Constant fluid property model investigations 
The original theory according to Nusselt [l] 

involved the solutions of equations (3) and (5) 
subject to the boundary conditions: 

u,(O) = 0, T(0) = T,, = 0, 

T(4 = T,, (43) 

together with the simplified heat balance: 

kg 
0 

dT,, 
= h,, dx, ’ (44 

2 x2=0 

Terms involving inertia forces and convective 
heat transfer were neglected as well as the effect 
of interfacial shear. Nusselt obtained the follow- 
ing results : 

T = T, + (T, - T,)?; (45) 
x1 

the local film thickness of the condensate layer is : 

&, = @‘h (4,PrWt, (464 

where A,, = gp(p - p:)x:/p2 is the ratio of the 
gravitational buoyancy force to the viscous 
force, Pr = c&k is the Prandtl number and 
K = h,,/c,(T, - T,) is the ratio of the latent 
heat of the vapour to condensate enthalpy 
change?. For the condensation rate and heat 
transfer Nusselt’s theory yields 

rx, = 31&,(~X,/~J3~ (46b) 

h,, = W,,Pr K)*l(xr$), (46~) 

Nu,, = (A,,Pr K)*l,/Z (46d) 

and finally 

h = $h,, Nu = $Nu,. We) 

On including the effect of thermal convection, 

t In analogy with the dynamically similar free convection 
flow on a cooled vertical wall the dimensionless group A,, is 
effectively a condensate Grashof number. 
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Rohsenow [3] obtained the heat-transfer ex- and by virtue of equation (50) the heat balance 
pression becomes 

hR = (1 + 0*68/K)* hN * XI XI 9 (47) 

the superscripts R and iV denote the values 
obtained by Rosenhow and Nusselt respectively. 

Further investigation by Chen [6], to include 
the effects of inertia forces, thermal convection 
and interfacial shear, yielded the results: 

h dT,, 
jg dx, 

= k 2 = const. (51) 
2 

The boundary conditions are given by equation 
(43) and the fluid property relations by (6). Note 
that cP does not appear in this model since the 
convective heat-transfer term in (50) is omitted. 
The liquid-phase similarity variables [see equa- 
tions (17) and (20)] are introduced as follows : 

and 

Wa) 

+ 0,375; + 0.020& 

(48b) 

Relations (48a) and (48b) agree, to within one 
per cent, with the boundary-layer calculations 
of Koh, Sparrow and Hartnett [S] when Pr 2 1 
and K > 5. 

Variable fluid property model investigations 
To date the effect of variations in the physical 

properties of the condensate have been con- 
sidered in relation to Nusselt’s model [l]. These 
improvements, due to Drew [7], Voskresenskiy 
[8], Labuntsov [9] and Minkowyn and 
Sparrow [lo], will now be considered in some 
detail since they are particularly relevant to the 
results given in the present paper. 

On neglecting the effects of inertia forces, 
convection transfer and interfacial shear, the 
governing equations of motion (l-5) for the 
condensate are : 

& PS = -(P-P399 ( > (49) 
2 

-.!p =o, 
( > 2 8x2 

(50) 

x1 = LX,, x2 = LX,, 

6 = L(4X,)*& Vl =+wf(rj), 

T - T, 
g(V) = -9 

T, - G 
9 = X2/(4X1)+, 

v2 + 
L= 2 . 0 (52) 

9 

Consequently equations (49-51) and the property 
relations (6) simplify to 

P - PS = -- 
PS ’ 

f(0) = $ ~ = 0, 
0 

(53) 

g(0) = 0, g(6) = 1, (54) 

3Pr,K, 
s 

$ f dq =$ = const., (55) 
S S 

and 
0 

P = P(g ; L T,h P = Ag; L T,) 

and k = k(g ; T,, TJ, (56) 

respectively. 
It is convenient to choose the dimensionless 

temperature g, instead of 9, as the independent 
variable (see Carslaw and Jaeger [16]. For, from 
equation (54), 

d k,E d 
7--- 
d? k dg’ (57) 
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and 

'k 
1 

(58) fil$ = p-b 
s is s 

;dg. 
s 

0 0 

and so equation (53) becomes: 
Expressions (64) and (65) have, according to 

(59) Labuntsov [9], been derived by Voskresenskiy 
[8].t The relevant integrals have been evaluated 

subject to the boundary conditions 
approximately by Labuntsov [9] on assuming 
that the density of the condensate is independent 

f = 0 at g = 0 and df/dg = 0 at g = 1; (60) of the temperature and that the conductivity 

the heat balance (55) transforms to: 
and viscosity are temperature dependent as 
follows : 

1 

s 

$- f dg = E2/3Pr, K, (61) 
k = k, + g(k, -s- k,), (67) 

s s 
0 and 

The differential equation (59) subject to (60) is 
readily integrated, and on using (58) and (61) (68) 
flow and heat-transfer characteristics can be 
evaluated. Labuntsov obtains the result : 

The condensate velocity is given by and suggests, for 0.5 < k,/k, 6 2 
p,,,/p, < 1, that expression (69) is 

$%!$)t rg!!!![ 9-‘z (!$)dg~ represented by the simpler result : 

gz=o 
xglci;;,& ; ;I2 ; (62) 4L; T,) - 

and 0.1 < 
adequately 

(70) 

the flow and heat-transfer characteristics are : Ignoring the negligibly small density factor 

& =. (1 - $)+I: d+(%; T,), 

on the right-hand side of (64) it is seen that the 
Voskresenskiy factor c( T, ; T& gives the effect of 

(63) variable physical properties of the condensate 
on flow and heat transfer. The alternative 

r h * -t 

&=@$=. ( > 

l-ps 
approach, of Drew [7], to account for the effect 

c(T,; T,); (64) 
PS t At present the authors have been unable to obtain a 

the factor c(T, ; 7” is given by copy of the paper by Voskresenskiy [8]. 
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of variable physical properties is to use Nusselt’s 
formulae [see equations (46)] with the property 
values taken at an effective reference tempera- 
ture. To derive this approximation Drew has 
assumed that p and k are independent of the 
temperature and p varies inversely as the 
temperature as given by expression (68). Re- 
turning to (65) a simple integration yields the 
result : 

4Tv; n = 

+ 0.25 (i - JJ]]‘. (71a) 

Thus the effect of variable viscosity is accounted 
for by evaluating the viscosity in the Nusselt 
formula at reference temperature TD Drew 
further assumes that p and k in (71a) are evalu- 
ated at this reference temperature. In a similar 
fashion the Voskresenskiy factor can be approxi- 
mated by the result : 

where p, k and ~1 are evaluated at the effective 
reference temperature TM_, = T, + 0.31 
(T, - T,), as deduced by Minkowycz and 
Sparrow [lo]. 

In Table 4 the Voskresenskiy factor c( T,; TJ is 
evaluated for saturated water using the 
Labuntsov expressions (69) and (70), the Drew 
expression (71a) and the Minkowycz and 
Sparrow expression (71b). Exact numerical 
values of the triple integral have been com- 
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puted with the property relations (38) by 
representing the integral as three fast order 
differential equations and solving these by 
Gill’s modification of the Runge-Kutta method. 
The agreement between the exact values for 
c(T,, T,) and those for the Labuntsov equation 
(69) is nearly precise. However, it should be 
remarked that c depends on the fourth root of 
this integral and in general it does not follow 
that the simple property relations (67) and (68) 
should replace those given in (38). Moreover 
in the derivation of (69) p has been replaced by 
ps and once again the fourth root helps to mask 
the small order effects due to density variations. 
Finally, the values of c( T,; TJ as given by either 
the Drew expression (71a) or the Minkowycz 
and Sparrow expression (7 1 b) are seen to be more 
accurate than those obtained using the 
Labuntsov expression (70). The latter result is 
not surprising since in [lo] the reference 
temperature TM+ has been deduced from 
numerical solutions of equations (53) to (55) 
using accurate values of p, p and k with the 
temperature difference (T, - T,) varying from 
1 to 25°C. 

DISCUSSION OF RESULTS FOR THE 
CONDENSATION OF STJL4M 

In the following sections the variable fluid 
property similarity solutions obtained for the 
laminar film condensation of steam are dis- 
cussed in relation to the known constant fluid 
property solutions [l-6] and the approximate 
variable fluid property solutions [7-91. 

Table 4 

Labuntsov, Labuntsov, Drew, Minkowyu 
T,- T, P.k,p 

variable equation equation equation and Sparrow, 
(69) (70) (71a) equation (7 1 b) 

100 0.7202 0.7286 0.7324 07149 07270 
90 0.7541 0.7577 0.7738 0.7467 0.7628 
60 0.8492 0.8477 0.8753 0.8420 0.8574 
30 0.9315 0.9297 0.9478 0.9268 0.9335 
10 0.9813 0.9780 0.9845 09797 0.9828 
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Velocity and thermal projiles 

G. POOTS and 

Representative velocity and temperature func- 
tions are given in Table 3 for the condensation 
of steam at 100°C in the extreme case when the 
wall temperature T, = 0°C. It is seen that the 
condensate velocity profile has nearly zero 
slope at the interface. In fact the shear stress 
changes sign at q/& = O-98. Note also that the 
vapour inflow velocity [as calculated using 
expression (32)] is virtually constant. 

In Fig. 1 dimensionless velocity profiles 
o,/(4x,g)* are given for T, = 0°C and T, = 
90°C respectively. Physically the liquid and 
vapour velocities are continuous at the interface, 

r- 

R. G. MILES 

and calculated using the variable property 
relations (38). The liquid phase velocity profiles 
due to Nusselt, Voskresenskiy and that of the 
present paper are identical when T, = 90°C. 
In fact as T, 4 T, the combined effects of 
inertia forces, convective heat transfer, inter- 
facial shear and variable physical properties are 
negligibly small. This result has already been 
established by Koh, Sparrow and Hartnett [S] 
in the stipulation that for a constant fluid 
property model these effects can be neglected if 

Pr > 1 and K = h’g 
c&T, - T,) 

3 5. 

?A 7). 
FIG. 1. Representative dimensionless velocity profiles for T, = 0 and 90°C; Voskresenskiy 

_.-.- , Nusseh - - - - - - present calculation --. 

~1r.j = 1 or r~* = 0, and the apparent dis- 
continuity shown graphically is due to the 
method of plotting. These profiles are compared 
with (a) the Nusselt profiles given by expression 
(45) with property values taken at effective 
reference temperatures T, = T, + /?(T, - T,) 
with /? = 0.33 for T, = 0°C and jI = @26 for 
T, = 9o”C, respectively,? and (b) the related 
Voskresenskiy profiles given by expression (62) 

t These values of the reference temperatures are ob- 
tained on correlation of wall heat-transfer coefficients 
obtained using Nusselt’s constant fluid property model with 
the calculated variable fluid property results. The correlation 
procedure will be discussed later, see expression (81). 

For T, = 0°C these combined effects are more 
apparent. At the interface the condensate 
velocity in the Voskresenskiy theory is + 12 per 
cent in error. It follows, since inertia forces and 
convective terms are probably negligible, that 
this discrepancy is due to the neglect of vapour 
drag at the interface. It should be noted that for 
the velocity profile in the case T, = WC, the 
close overall agreement between the present 
calculation and that due to Nusselt has been 
achieved using an effective reference tempera- 
ture. With /I = 0+33 the condensate velocity at 
the interface is in error by -65 per cent whilst 
using /I = O-31, as proposed by Minkowya and 
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Sparrow [lo], for correlation of heat-transfer 
results the error is - 11 per cent. 

The liquid phase thermal profile (see Table 3) 
is nearly linear indicating that heat-transfer by 
conduction is dominant. For example, in the 
case T, = OOC, the maximum deviation from 
the linear profile is only + 65 per cent occurring 
at approximately ~14 = 0.4. Such deviations 
are probably due to the effect of variable 
conductivity rather than to the inclusion of 
convective heat-transfer etc., in the governing 
equations. In this connexion it is interesting to 
point out that the dimensionless temperature 
function G, (as given in Table 3) when rounded 
off to three decimal places, is identical to the 
dimensionless conduction profile in fully de- 
veloped Couette flow of water when the fixed 
plate is maintained at a temperature 0°C and 
the moving plate at a temperature 100°C (see 
[14]). - - 

FILM THICKNESS AND CONDENSATION RATE 

The condensate film thickness is determined 
by expression (24); the integral 

t 

J FdrI 

0 
is tabulated in Table2 for various AT = T, - T,. 
It is convenient to consider the dimensionless 
ratio : 

where (StJ, is the Nusselt film thickness defined 
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by equation (46a) and evaluated at the tempera- 
ture T, = 100°C. Similarly for the condensation 
rate the relevant dimensionless ratio is 

r 
-+ = 3 1 - $ -&, KJ+F(@; 

( > WX,), s 
(73) 

F(4) is tabulated in Table 2 for various AT. 
The dimensionless ratios S,,/(S~,), and T,,/(Tf,), 
are given in Table 5 together with the percentage 
deviation of the Voskresenskiy formulae [equa- 
tions (63. 65, 38) for 6,,/(6:,), and (64. 65. 38) for 
r,,/(r~J,] and the approximate Labuntsov 
formula [equations (64) and (70) for r,,/(r,N,),], 
respectively. Obviously the neglect of interfacial 
shear in the Voskresenskiy theory produces the 
observed small over-estimation in the di- 
mensionless film thicknesses and condensation 
rates. In the extreme case T, = 0°C the percent- 
age deviation of the Voskresenskiy formulae for 
the dimensionless condensation rate is +2*5. 

It is interesting to compare this latter result 
with that obtained from the constant fluid 
property model developed by Chen [see ex- 
pression (48b)]. Using the Drew reference 
temperature TD the dimensionless condensation 
rate r$,/(rtJ, is in error by at most -4.4 per 
cent when T, = 0°C. Further calculation yields 
the effective reference temperature to be used in 
conjunction with the Chen expression (48b). If 

and 

T, = T, + ac(T, - T,), (74) 

&= a,C+ a: [y) + (x$(F)‘. (75) 

Table 5 

K--T, s,, 
(G), 

100 1.271 
90 1.235 
60 1.138 
30 1.064 
10 1.023 

Per cent deviation 5 Per cent deviation of 
of Voskresenskiy (rz,)s Voskresenskiy Labuntsov 

1.4 0.7028 2.5 4.2 
1.1 0.7356 2.5 5.2 
0.6 0.8297 2.4 5.5 
0.04 0.9184 1.4 3.2 

-0.10 0.9780 @4 @7 
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the method of least squares gives the “best-fit” 
for the Chen expression as 

0, _ r*, 
cr:,,s (r:,), 

(76) 

with a$ = O-2959, a: = -0.1437 and a$ = 
0.1646, respectively. 

HEAT-TRANSFER RESULTS 

The characteristic quantities representing the 
heat transfer at the wall are h,, and Nu,, as 
defined in equation (41). In terms of the dimen- 
sionless variables (20) and the Nusselt expression 
(46~) the dimensionless ratio involving the local 
wall heat-transfer coefficient is 

(77) 

and similarly for the local Nusselt number 

(78) 

values of (dG/d&, are given in Table 2 for 
various AT. The dimensionless ratios h,,/(h~l), 
and Nu,,/(Nu~,)~ are given in Table 6 together 

less than that calculated from the Voskresenskiy 
theory. The actual local heat-transfer coefficient 
must then increase accordingly. 

The alternative approach to allow for the 
effect of variable fluid properties is now ex- 
amined. Using the Drew reference temperature 
T, the dimensionless ratios (h%),/(hfJ, (h%),/ 
(h!J,, and (hc, l,Jth,N,))s are in error by -5.8, 
-2.9 and - 35 per cent, respectively, when 
T, = 0°C. In this extreme case the correspond- 
ing error in (hf,)/(h,N,), using the Minkowycz and 
Sparrow reference temperature TMA is - 1.4 
per cent. This close agreement is due to the 
judicious choice of the reference temperature 
T M_-4 since the actual error in the Voskresenskiy 
theory is -3.3 per cent. Precise agreement 
between the various expressions for the heat- 
transfer coefficients due to Nusselt, Rohsenow 
and Chen, respectively, and those obtained on 
the present paper can be achieved by evaluating 
all the properties appearing in these expressions 
at the reference temperatures : 

where 
T= T,+BK-- KJ, (79) 

P=Bo+Pt($+P,(:)i (80) 

Table 6 

T,-T, h,, 
Per cent deviation Per cent deviation 

UC,), Voskresenskiy Labuntsov % Voskresenskiy Labuntsov 

100 07448 -3.3 -2.2 0.9233 -3.4 - 1.7 
90 0.7762 -2.8 -2.4 0.9220 -2.8 -0.3 
60 0.8631 - 1.6 -1.8 0.9298 - 1.6 1.4 
30 0.9376 - 0.65 - 0.8 09584 -060 1.1 
10 0.9826 -0.13 - 0.45 0.9870 -0.12 -0.21 

with the relevant percentage deviations of the The method of least squares was employed to 
Voskresenskiy formula [equations (64, 65, 38)] obtain the coefficients /I,,, & and Bz, so that 

and the approximate Labuntsov formula [equa- 
tions (64) and (70)]. It is seen that the Vos- 2 _ (hZ)r h 

kresenskiy theory yields maximum under- (h:,), (@A 
(81) 

estimates of - 3.3 and - 3.4 per cent in h,,/(h,N,),, 
respectively, for the extreme case T, = 0°C. for the Nusselt formula and similar expressions 
Due to vapour drag the actual film thickness is for the Rohsenow and Chen formula. These 



LAMINAR FILM CONDENSATION 1691 

calculations have been repeated to give cor- on heat-transfer coefficients, according to 

relations of the form : MeAdams [7], are at most 28 per cent higher 
than those deduced from Nusselt’s theory using 

Nux, _ (NaN ) x1r. 
the Drew reference temperature. The resulting 

(N#,)s (Nu:J, 
(82) d’ iscrepancy, of order 22 per cent, between 

experiment and the present results is known to 
The least squares estimates of the coefficients be caused by surface tension. Kapitsa [17] has 
&,, j3r and fiz are listed in Table 7. It is pro- shown that for a critical Reynolds number 
posed that the above reference temperatures are Re,, = 4F,,/fis 2 33 waves begin to form on 
valid for the complete range of wall temperatures the surface of the laminar film. Kapitsa has also 

I;, = 0400°C. For example, in the evaluation shown that the average film thickness is reduced. 

Table I 

Nusselt 
Rohsenow 
Chen 

b,,/K,)J wr,/(~u:,)s 

PO 8‘ 82 BO 81 82 

0.2474 Q1580 -0.0769 05371 -0.4819 06478 
0.1602 0.1649 - 0.0356 0.3490 -0-2323 0.4832 
0.2228 0.1003 - 0.0255 0.4852 - 04845 06448 

of the rates (h~,),/(h~,), the values for the co- 
eficient #I are O-33, O-32,, 0.31, 0.30 and 0.26 
when T, - T, = 100, 70, 40, 30 and iO”C, 
respectively. Thus for small tem~rature differ- 
ences of order 10°C the Drew coefficient fl = 
0.25 can be adopted as this gives a maximum 
error of less than 0*03 per cent. Even for AT C 
30°C the maximum possible error using the 
Drew coefficient is @5 per cent whilst the 
Minkowycz and Sparrow coefficient /? = 0.31 
yields a maximum error of O-2 per cent. 

CONCLUDING REMARKS 

It has been shown, from the variable fluid 
property similarity solutions, evaluated for the 
laminar film condensation of steam, the wall 
heat-transfer coefficients, obtained using Nus- 
selt’s constant fluid property model with Drew 
reference temperature, are in error by at most 
-58 per cent. This discrepancy is due to the 
neglect of the non-linear effects of variable 
physical properties in the condensate and the 
effect of vapour drag; effects due to the omission 
of the inertia forces and convective heat transfer 
are unimportant. However, experimental data 

thus leading to a corresponding increase in the 
heat-transfer coeflicient. In practice the effect 
of ripple formation on the surface of the laminar 
film is accounted for by using a correction factor 
of l-2. Further references daiing with the 
correlation of experimental data, to account for 
surface tension effects, are given by Kutateladze 
[18] and in the review paper by Chisholm and 
Provan [ 191. 
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R&umOUne ttude thtorique a tt6 faite sur la condensation en rkgime permanent par film laminaire 
bidimensionnel de vapeur d’eau satur&e pure ?I 100°C et g pression atmosphtrique sur une paroi verticale 
isotherme. Les proprittts physiques variables du condensat sent supposCes &re celles de I’eau saturke 
aux tempkratures convenables. En nCgligeant les effets de la tension superficielle a l’interface liquide- 
vapeur, les Equations de base pour les phases liquide et vapeur sent simplifi&es en employant les approxima- 
tions de la couche limite et elles admettent une solution en fonction des variables de similitude. A partir 
des solutions numdriques des dquations diffkrentielles ordinaires qui en dtcoulent, les CaractQistiques 
de I’&oulement pour les phases liquide et vapeur sent dbtermin&s pour des temp&atures de paroi de 0, 
10,4O, 70 et 90°C. Les resultats correspondant au transport de chaleur & la paroi et au flux de masse dans 

la phase liquide sent prCsentb et cornpar& en d&ail avec ceux des thtories existantes. 

Zusammenfassuog-Eine theoretische Untersuchung wurde durchgefiihrt fiir die stationke, zweidimen- 
sionale, laminare Filmkondensation von reinem gesiittigten Dampf bei 100°C und Atmosphirendruck an 
einer isothermen senkrechten Wand. Als die verlnderlichen Stoffwerte des Kondensats werden jene des 
gesattig en Wassers bei der entsprechenden Temperatur verwendet. Bei Vernachllssigung der Einfliisse 
der Oberfltichenspannung an der Fliissigkeits- und Dampfgrenzfllche lassen sich die Bestimmungs- 
gleichungen fti die fliissige und gasf&mige Phase durch Grenzschichtnlherungen vereinfachen und 
ergeben eine Lasung in Form von Ahnlichkeitsvariablen. Aus numerischen LGsungen der sich ergebenden 
gewiihnlichen Differentialgleichungen werden Striimungskomponenten fiir die fliissige und die dampf- 
fiirmige Phase fiir Wandtemperaturen von 0, 10,40, 70 und 90°C bestimmt. Die zugehiirigen Ergebnisse 
fiir den WlrmeUbergang und den Massenstrom in der lliissigen Phase werden angegeben und im einzelnen 

mit Werten anderer Theorien verglichen. 

~~E~--npOBe~eHOTeOpeTU~eCKOeUcC~e~OBaHUeyCTaHOBUU~e~CK~ByMepHO~~a~UHap- 
HOti n2IeHO'40HO~KOH~eHCa~UU~UCTOrOHaCbl~eHHOrOnapanpU 10% U aTMOC+?pHOM AaU.rle- 
HUU Ha U3OTepMU'leCKOfi BepTUKaJlbHOft CTeHKe. 3a nepeMeHHble (PU3UqecKne caoficTea 

IKU~KOrOKOH~eHCaTa B3RTbll@3U'8eCKUeCBOfiCTBa HaCblIl4eHHOftBOAbl npU COOTBeTCTBylOIIIUX 
TernepaTypax.rIpeUe6perafisnUaHUeM noBepxHocTUoroUaTmietniK~arpaHU~epaa~ena~aa 
%UAKOCTb-nap UOmHO ynpOCTUTb OCHOBHbIe ypaBHeH?iR AJIJI ?KUAKOfi U napOBOfi @a3 nyTeM 
Ucnonbaoaamm npn6ra~eHnfi norpaHnqHor0 CJIOR n nonyqnTb perueKne B nepeMeHtmx, 
nO3BOJIRioIQUX CBeTu3aJJWij'KaBTOMO~f?JIbHOtt. Ha OCHOBequCneHHblXpellleHUtt KOnyqeHHblX 

o6nrlrHsrx AUl#8epeH~u&lIbHbIX YpaBHeHHt MOWHO OlIpeAWIuTb XapaKTepuCTUKU I-IOTOKZI AJIFI 

~iA~0i U napoeofi @as npn TemepaTypax cTeKKn 0, 10, 40, 70 )I 9ooC. Honysetitible 
pe3yJlbTaTblAJlR TenJIOO6MeUa HaCTeHKe U IlOTOKa MaCCbl B HcuAKOtt &3e!.WTaJIbHO CpaBHU- 

BaJIuCb C pe3j'JIbTaTaMu CJ'l&?CTBJ'IO~uX TeOputi. 


